
USER’S

MANUAL

MDU/MES000x-MyA

KNX Hotel Solution:

Door Unit MDU000x-My

Energy Saver MES000x-My

Device Manipulation & ETS™ Application

Description

August 2017

Revision Sheet

Release No. Date Revision Description
Rev. 0 24/8/2017 User’s Manual Created
Rev. 1 14/11/2017 Added more detailed information about parameters

User’s Manual Page 2

USER'S MANUAL

TABLE OF CONTENTS

Page #

1 GENERAL INFORMATION...6

1.1 System Overview..6

1.2 Minimum requirements...6

1.3 Acronyms and Abbreviations...6

2 SYSTEM SUMMARY..9

2.1 Application Functions Overview...9

2.2 Devices variations...10

3 GETTING STARTED..12

3.1 Connecting for the first time..12

3.2 Downloading application with ETS™...12

4 DETAILED PARAMETERS DESCRIPTION..14

4.1 DND General Configuration..14

4.1.1 DND General Configuration – Door Unit 15

4.1.2 DND General Configuration – Energy Saver 18

4.1.3 DND Confs – Authentication 20

4.1.4 DND Confs – Memory Access Configurations 23

4.1.5 DND Confs – Authentication Ids Configuration 28

4.2 Authentication Actions...30

4.3 Logic Channels..35

4.3.1 Copy and Forward 35

4.3.2 Logic Operation 39

4.3.3 Comparison 45

4.3.4 Mathematical operation 49

5 OPERATION DESCRIPTION..53

5.1 Local vs. Remote authentication..53

5.1.1 Local authentication typical usage 55

5.1.2 Remote authentication typical usage 56

5.2 Using device for creating cards..57

5.2.1 The sequence for creating the card from brand new card 58

5.2.2 The sequence for creating the card from already used card 59

5.3 Example: changing authentication credentials for Local Authentication...................................59

5.3.1 Making card to not authenticate 59

5.3.2 Setting the room’s devices authentication to the created card’s credentials 60

5.4 Encryption...61

Appendix A -Logic operations...65

I - AND (Logical Conjunction)..65

II - OR (Logical Disjunction)..66

III - XOR (Exclusive disjunction)..67

IV - NOT (Negation)...68

Appendix B -KNX Data types..69

Appendix C -Card’s memory access conditions (nxp vs fudan)...72

Appendix D -Mifare Memory Layout..74

Appendix E -Encryption, CRC16: Algorithms & Source code...75

I - Encryption: RC4 algorithm and source code..75

II - Cyclic Redundancy Check: CRC16 algorithm and source code...79

Appendix F -Detailed description of Communication objects..80

I - DND...80

II - Logic Channels...82

1 GENERAL INFORMATION

User’s Manual Page 5

1 General Information

1 GENERAL INFORMATION

1.1 System Overview

This manual refers to the following devices for KNX bus:

• MDU0001-M: KNX Hotel Door Unit

• MDU0001-MR: KNX Hotel Door Unit with Relay

• MES0001-M: KNX Hotel Energy Saver

All of the previous include 1 built-in Mifare Classic1 Card reader, and 4 configurable Logic Channels

(each of them configurable as Logic Operation, Copy and Forward, Comparison or Mathematical

Operation), 1 programming button and 1 programming mode indication LED.

The Logic Channels are intended to provide flexibility in automation tasks, by allowing the user to

reproduce a desired action upon the verification of determined situation. This module will be

described in detail ahead in this manual.

1.2 Minimum requirements

The ETS™ MDU/MES000x-MyA application is to be used with KNX Association’s ETS4™ or

higher.

Known to work with:

• ETS4™ (version 4.2.0 build 3884)

• ETS5™ (version 5.5.2 build 665)

1.3 Acronyms and Abbreviations

CO Communication Object
DPT Data Point Type
EIB European Installation Bus (former name to KNX; no longer in use)
GA Group Address
LED Light Emitting Diode
DND Do Not Disturb
ID Identification (card’s identification number)
RC4 Rivest Cipher 4
CRC Cyclic Redundancy Check

1 Please refer to Mifare Classic technology reference: http://www.nxp.com/products/identification-and-
security/mifare-ics/mifare-classic:MC_41863

User’s Manual Page 6

http://www.nxp.com/products/identification-and-security/mifare-ics/mifare-classic:MC_41863
http://www.nxp.com/products/identification-and-security/mifare-ics/mifare-classic:MC_41863

1 General Information

User’s Manual Page 7

2 SYSTEM SUMMARY

User’s Manual Page 8

2 System Summary

2 SYSTEM SUMMARY

Table 1: Applications specifications
Specs Number of

Communication Objects
Maximum number of

Group Addresses
Maximum number of

AssociationsVariant

MDU/MES000x-MyA 1562 250 250

2.1 Application Functions Overview

The MDU/MES000x-MyA ETS™' application provides the interface to configure the card

authentication method to one of the following:

• Accept all cards;
• Local authentication:

• card’s memory check;
• card’s ID check;

• Remote authentication:
• card’s memory check;
• card’s ID check;

The available buttons can be configured for one of the following functions:

• Button not used;
• ON / OFF;
• Toggle Switch;
• Dimming;
• Shutter / Blinds;
• Heating;
• Priority;
• Scene;
• Value;
• 2-Channel mode.

Additionally, each of the 4 Logic Channels can be configured to one of the following modes:

• Not used;
• Logic operation (binary);
• Copy and Forward;
• Comparison;
• Mathematical Operation.

Many other features are available, and those will be discussed in detail in DETAILED
PARAMETERS DESCRIPTION.

2 This value is the number of COs reserved in device’s memory, however some of them may not become
visible, depending on the device’s configuration.

User’s Manual Page 9

2 System Summary

2.2 Devices variations

There are tow hardware that shares the same application:

• MDU0001-MR: equipped with Mifare Classic reader and up to 12V, 2A solid state relay;
• MES0001-M: equipped with Mifare Classic reader;

Functionally both are similar;

Table 2: Devices differences
Variant

MDU000x-My MES000x-My
Functionality

Relay X

LCD X

Buzzer X

Number of buttons 1 3

Number of LEDs 4 4

User’s Manual Page 10

3 GETTING STARTED

User’s Manual Page 11

3 Getting Started

3 GETTING STARTED

3.1 Connecting for the first time

After connecting the MDU000x-My or MES000x-My device for the first time to the KNX/EIB bus,

the user will see the buttons' LEDs turning switching between red and blue one at a time.

This behaviour means that the device hasn't been loaded with a valid ETS™' application yet. The

same behaviour may be observed when an invalid application is loaded into the device.

3.2 Downloading application with ETS™

If it's the first time that the device will be programmed, you must define the Individual Address via

ETS™ interface. You must also press the programming button on the device for allowing ETS™ to

identify the target device. You will know that the device is in programming mode when the

programming LED turns on. During programming process the programming LED and the

programming mode will automatically turn off.

The Individual Address is normally written once, however if it's necessary to re-write the Individual

Address, the programming button must be pressed.

Once the device has its Individual Address, the device can be configured according to the project

needs using ETS™ application, selecting “Download Application”.

User’s Manual Page 12

4 DETAILED PARAMETERS DESCRIPTION

User’s Manual Page 13

4 Detailed Parameters Description

4 DETAILED PARAMETERS DESCRIPTION

In this section all the functions will be introduced and explained in detail, as well as explained the

ETS™ Product Database usage. This information should be enough for the installer to understand the

device operation in any of the functions and to configure it with the ETS™ database.

NOTE: For configuring the Buttons and LEDs the user should refer to the MSW100X-PL manual

since the configurations are the same.

The combination of Hotel Room Door Unit with Hotel Room Energy Saver is said to be Do Not

Disturb system (DND). From this point onwards when referring to DND it is being referred to this

group.

4.1 DND General Configuration

In ETS™, when you select the general page you will see an environment similar with the one in

presented in Figure 1. In this page, in the parameter “Select target device” it must be selected the

correct Hardware:

• MDU000x-M it must be selected Door Unit option

• MES000x-M it must be selected ESaver option

Depending on this selection different group of parameters are going to be available.

User’s Manual Page 14

4 Detailed Parameters Description

4.1.1 DND General Configuration – Door Unit

Figure 1: DND General Configurations page (Door Unit)

Here some parameters that will affect all the system can be configured. All the parameters are

explained in the Table 3.

User’s Manual Page 15

4 Detailed Parameters Description

Table 3: Description of parameters from DND General (Door Unit) configurations page
Parameter Description Values

Override previously saved
settings?

Will reset user settings made after installation upon
new ETS download.

- *Yes
- No

Room Number Sets the Room Number Min: 0
Max: 9999

At power up Selects the behavior of the DND at device power up
after a power failure

- *Do nothing
- Valid card presented (level 1)
- Valid card presented (level 2)
- Valid card presented (level master)
- Valid card removed (level 1)
- Valid card removed (level 2)
- Valid card removed (level master)

Enable request card operations
(read/write) via COs?

When active, COs for read/write operations on
Mifare Classic cards become available

- Yes
- *No

3 Operation request timeout (s) Time after which a pending read/write request must
be terminated

Min: 0s
Max: 255s

Set KeyA and KeyB When set to “Yes” the access KeyA and KeyB from
the card are both modified

- *Yes
- No

At valid card show on display The text to show on the 7-segments display when a
valid card is presented

4 characters string

At invalid card show on display The text to show on the 7-segments display when an
invalid card is presented

4 characters string

Show information on display for
(s)

Defines for how long the information of card read
result remains on display

Min: 0s → won’t show
Max: 255s

Text cycling rate (x100ms) When the text string via “Show text on display” CO is
longer than the display number of characters,
defines the amount of time between shift steps of
the string; the text is rolled on display

Min: 0 = 0ms
Max: 31 = 3100ms

Spaces between text’s
beginning and end while cycling

When the text string via “Show text on display” CO is
longer than the display number of characters,
defines the amount of spaces placed between the
string’s beginning and end

Min: 0 spaces
Max: 4 spaces

Text timeout (s) When a text string is received via “Show text on
display” CO, it defines the amount of time it remains
showing;

Min: 0s → until an empty string is
received
Max: 255s

Relay controllable via Comm.
Obj.?

When active, COs for controlling the relay’s status
become available

- Yes
- *No

4 Relay control type Selects the contact control type of the relay - *On=Contact Closed; Off=Contact Open
- Off=Contact Open; On=Contact Closed

At power up? Defines the behavior of the relay when the device
comes from a power failure

- Do nothing
- *Off
- On
- Keep previous status
- Request status via CO

Keep override after power up? If active, the override status of the relay (controlled
via “Prio On/Off”) is kept after a power failure

- Yes
- *No

Relay “Off Pulse” duration
(x100ms)

The duration of the Off pulse Min: 0 = 0ms
Max: 255 = 25.5s

3 Visible if “Enable request card operations (read/write) via COs?” is “Yes”.
4 Visible if “Relay controllable via Comm. Obj.?” is “Yes”.

User’s Manual Page 16

4 Detailed Parameters Description

Relay “On Pulse” duration
(x100ms)

The duration of the On pulse Min: 0 = 0ms
Max: 255 = 25.5s

The parameter “Set KeyA and KeyB” parameter is specially important when using Mifare Classic

compatible cards instead of the NXP ones (see Appendix C).

When in 4.2 in the section “RELAY USAGE” any of the parameters is set to “Pulse On” or “Pulse Off”,

the parameters “Relay “Off Pulse” duration (x100ms)” and “Relay “Off Pulse” duration (x100ms)” define

the pulse. This can be used for example to trigger a door lock when a valid card is presented.

The parameters under the section “ANTENNA SETTINGS” shall not be modified, unless explicit

instructed by the manufacturer.

User’s Manual Page 17

4 Detailed Parameters Description

4.1.2 DND General Configuration – Energy Saver

In this section just the parameters that differs from the ones explained in 4.1.1 are going to be

explained.

A more detailed description of each parameter is found in Table 4.

Table 4: Description of parameters from DND General (Door Unit) configurations page
Parameter Description Values

Melody to play when bell rings Selects the buzzer tone to reproduce when the Bell
CO receives and activation value

- None
- *Melody 1
- Melody 2
- …
- Melody 6

When valid card detected Selects the buzzer tone to reproduce when an
authenticated card is presented

- None
- Melody 1
- ...
- *Melody 5
- Melody 6

User’s Manual Page 18

Figure 2: DND General Configurations page (Energy Saver)

4 Detailed Parameters Description

When invalid card detected Selects the buzzer tone to reproduce when an
unauthenticated card is presented

- None
- Melody 1
- ...
- Melody 5
- *Melody 6

When valid card undetected Selects the buzzer tone to reproduce when an
authenticated card is is removed from the reading
field

- *None
- Melody 1
- ...
- Melody 5
- Melody 6

When invalid card undetected Selects the buzzer tone to reproduce when an
unauthenticated card is removed from the reading
field

- *None
- Melody 1
- ...
- Melody 5
- *Melody 6

Invert “Bell” CO? When set to “Yes”, an Off message via “Bell” CO will
trigger the buzzer tone for the bell; otherwise it is
triggered by On

- *No
- Yes

Invert “Bell Mute” CO? When set to “Yes”, an Off message via “Bell Mute”
CO will mute the buzzer tones; otherwise it is muted
by On

- *No
- Yes

Keep mute status at power up? When set to “Yes”, after a power failure the buzzer
mute status is kept

- *No
- Yes

User’s Manual Page 19

4 Detailed Parameters Description

4.1.3 DND Confs – Authentication

In this section the configurations for the card’s authentication are explained. The default configuration

page is shown in Figure 3.

Table 5: Description of parameters from authentication configurations
Parameter Description Values

Accept all cards If set to “Yes” any card ISO/IEC 14443 compatible
that answers to the card select command will be
treated as an authenticated card

- *No
- Yes

5 Authentication point Selects how the authentication is preformed;
Remote: the device will get the authentication
credentials from the card, issue them to the bus and
way acknowledgment; Local: the device itself will
have enough information to authenticate the
presented card

- Remote
- *Local

5 Visible if “Accept all cards” is “No”

User’s Manual Page 20

Figure 3: Authentication configurations’ page

4 Detailed Parameters Description

6 Timeout for remote
acknowledge (s)

Sets the maximum amount of time that the
acknowledge message can take after the presented
card credentials have been sent

Min: 0 = 0s
Max: 255 = 255s

Authentication data Selects which are the card credentials to be tested - *Card’s memory content
- Card’s ID

Use authentication level 2 Selects whether Level 2 authentication cards are to
be tested when a card is on the reading field

- No
- *Yes

Use authentication Master Selects whether Level Master authentication cards
are to be tested when a card is on the reading field

- *No
- Yes

Make read every (x100ms) Sets the polling period for attempting to read a card
on the reading field

Min: 0 = 0ms
Max: 15 = 1.5s

Failed read attempts to declare
undetection

Sets how many failed attempts to read a card on the
field to declare that the card is not present

Min: 0
Max: 255

Use Comm. Obj. encryption? When set to “Yes” it is possible to select among a list
of COs which ones are to be encrypted

- *No
- Yes

7 Cypher pass as The cypher pass type - *ASCII
- Decimal

Cypher pass Sets the encryption key for the selected COs (see explanation below)

Encrypt CO #? If set to “Yes” the CO is going to be RC4 encrypted
with the “Cypher pass”

- *No
- Yes

It shall be noticed that setting “Accept all cards” to “Yes” will result in accepting as authenticated any

card which answers to the ID request command. This may be used for example for the Energy Saver

units in case it is not desired to only allow the room’s door access card; a blank general card can be

than provided to only activate the Energy Saver.

It’s important to understand the meaning of the parameter “Authentication point”. This parameter

defines if the MDU/MES will make a request to a server8 inquiring the authenticity of a card on the

reading field – Remote Authentication Point; or if the MDU/MES possesses enough information for,

per se, evaluating the authenticity of the card on the reading field. For further insight read 5.1.

The parameter “Authentication data” as a very important role as it defines which is the relevant card’s

details for evaluating it’s authenticity. When one selects “Card’s ID” the MDU/MES is only going to

attempt to evaluate the card’s Identification number; this method is very simple and may ease project

deployment but has plenty drawbacks: there’s a chance, even small, to have more than a card owning

the same ID, also cloning a card’s ID is an easier process than cloning full memory; the authenticated

card’s IDs are static and configured as described in 4.1.5. When one selects “Card’s memory content”

(recommended) the MDU/MES is going to attempt to access the card’s memory in order to get its

6 Visible if “Authentication point” is “Remote”
7 Visible if “Use Comm. Obj. encryption” is set to “Yes”
8 The implementation of this “server” shall be your responsibility.

User’s Manual Page 21

4 Detailed Parameters Description

authentication credentials; for this some more parameters must be set configuring how the device will

access this memory credentials (see 4.1.4).

For increased security in the system it is possible to encrypt some of the most critical COs in order to

protect against hacking attacks. For this the parameter “Use Comm. Obj. encryption?” can be activated.

This will allow to selective chose from a list which COs will be encrypted (just 14 byte long messages

are encrypt-able). The message written to the KNX bus won’t be plain anymore, but will be encrypted

with an algorithm and key that its communication partners must implement. This mode is mostly

useful for projects where there’s a computer application tailored for the purpose which can include the

decryption software. Further details of how to use encryption and how to implement the decryption

algorithm are give in 5.4.

User’s Manual Page 22

4 Detailed Parameters Description

4.1.4 DND Confs – Memory Access Configurations

This page contents depends on the settings made on the “Authentication” page. The most relevant

parameters affecting this page are “Authentication point” and “Authentication data” (also when

“Accept all cards” is set to “Yes” this configuration page is suppressed); this page is only visible if

“Authentication data” from the “Authentication” page is set to “Card’s memory content”.

When in the “Authentication” parameters page the “Authentication point” is set to “Local” and

“Authentication data” is set to “Card’s memory content” the default settings of “Memory Acc. Confs.”

page can be seen in Figure 4.

The description of each of the parameters is found in Table 6.

User’s Manual Page 23

Figure 4: Memory Access Configurations(Local Authentication & Card’s Memory Content)

4 Detailed Parameters Description

Table 6: Description of parameters from Memory Access Configurations(Local
Authentication & Card’s Memory Content).

Parameter Description Values

Memory block number for Level
#

The card’s block to be used for reading and
checking for it’s data content

Min: 0
Max: 255

Memory expected data as Selects how the “Data expected for Level #” is going
to be entered

- *ASCII
- Decimal

Data expected for Level # The data that is expected to be in the found in the
memory block that was read; if the read data
matches this parameter the card is considered as
authenticated

[14 character/bytes]

When changing L# expected
memory via CO require
increment seq?

When set to “Yes” and when attempting to change
the expected memory data via CO, the newly
received data must be greater than the currently set,
otherwise it will be rejected

- Yes
- *No

Memory keys as Selected how the “Key Level #” is going to be
entered

- *ASCII
- Decimal

Key Level # Defines the key to be used while attempting to
access the sector of the memory block to read

[6 character/bytes]

When changing key via CO
require increment seq?

When set to “Yes” and when attempting to change
the memory block access key via CO, the newly
received access key must be greater than the
currently set, otherwise it will be rejected

- Yes
- *No

Case the parameter “Authentication point” is set to “Remote” the section “DATA EXPECTED” won’t

be displayed; this is due to the fact that the device won’t have the responsibility to assert about the

authenticity of the card’s credentials, it will only have the duty of attempting to read the defined

memory block address by using the defined memory key for each of the setup levels.

When setting “Memory block number for Level #” one should care about the card’s memory layout and

select a writable block. This allows to map up to Mifare 4K which has 256 block (from 0 to 255)

(refer to Appendix D -). In the Figure 5 this parameter sets the card compartment.

An authenticated card is expected to have “Data expected for Level #” value written in “Memory block

number for Level #” and locked with “Key Level #”.

User’s Manual Page 24

4 Detailed Parameters Description

Figure 5: Memory access configurations

It is possible to change the value “Data expected for Level #” for levels 1 and 2 on-the-fly via COs

“Authentication – [I] Level 1 expected Auth. Data” and “Authentication

– [I] Level 1 expected Auth. Data” respectively. This can be used, for example, in case

it is desired to change the room’s “credentials” for every new costumer; in this case, for minimizing

the risk of replay attacks9 the parameter “When changing L# expected memory via CO require increment

seq?” can be enabled (this solution works best by also enabling “Use Comm. Obj. encryption?” and

activating it to “Encrypt CO 80 ‘Level 1 expected Auth.’” and “Encrypt CO 81 ‘Level 2 expected Auth.’”):

every new expected authentication data that is sent to the MDU/MES must be higher than the

previously sent, otherwise it will be ignored. The idea is that, if a foreign observer spies on the bus

and receives one of the frames setting expected authentication data, if he tries to use it afterward by

re-sending it, it will be ignored because it will be equal (or lower in case new authentication data was

given) and MDU/MES will discard it. When using encryption, the authentication data frame has 12

useful bytes, so if the password increments by steps of one there are 2^(12*8), approximately

7.9228x1028 different possible expected data; however notice that it is not required to increment by

only one, the steps may be irregular. Notice that the observer won’t be able to see the data and guess it

9 “A replay attack is a category of network attack in which an attacker detects a data transmission and
fraudulently has it delayed or repeated. The delay or repeat of the data transmission is carried out by the
sender or by the malicious entity, who intercepts the data and retransmits it.” [source:
https://www.techopedia.com/definition/21695/replay-attack]

User’s Manual Page 25

4 Detailed Parameters Description

is increasing if CO encryption is used; if encryption is used and changing the MDU/MES won’t

consider the message as well since the CRC of the frame will fail. If for some reason the sequence

needs to be reset, this can be done by sending the maximum value (12 bytes with 0xFF) followed by

the minimum value (12 bytes with 0x00).

In Figure 6 it’s represented an activity diagram showing a situation where a foreign identity (spy) gets

access to the bus and intercepts a message that changes the Level 1 expected Authentication Data; the

intercepted frame is encrypted however, so it makes it impossible to manipulate it (any modification

in the intercepted frame will result in corruption and consequently rejection by the MDU/MES). The

spy can however re-send it, pretending to be the reception’s server; in this case the re-play of the

frame will also be rejected as its sequence number is lower or equal to the previous one.

Similarly with the previous, also the card’s memory access key (just for level 1 authentication) can be

updated at run-time over the KNX bus via CO. For this, the parameter “When changing key via CO

require increment seq?” must be set to “Yes”; the operation is similar with the one described for the

User’s Manual Page 26

Figure 6: Example of “When changing L# expected memory via CO require increment
sequence”

4 Detailed Parameters Description

parameter “When changing L# expected memory via CO require increment seq?”, just in this case the

number of relevant bytes are 6.

User’s Manual Page 27

4 Detailed Parameters Description

4.1.5 DND Confs – Authentication Ids Configuration

This page contents depends on the settings made on the “Authentication” page. The most relevant

parameters affecting this page are “Authentication point” and “Authentication data” (also when

“Accept all cards” is set to “Yes” this configuration page is suppressed); this page is only visible if

“Authentication data” from the “Authentication” page is set to “Card’s ID” and “Authentication

point” set to “Local”. In this page it is possible to enable groups of IDs that will be treated as

authenticated: three parameters exist in this page (seen in Figure 7) the allows to enable up to 10

Level 1 IDs, 5 Level 2 and 5 Level Master IDs. Per enabled ID a new tab is created were the authentic

ID can be defined.

In Figure 8 it is shown a configuration page for setting an authorized card ID; in this case setting a

Level 1 authorized ID. It is possible to setup up to:

• Level 1: 10 card IDs

• Level 2: 5 card IDs

• Master: 5 card IDs

User’s Manual Page 28

Figure 7: Authenticated Card IDs’ Configuration page (Local Authentication & Card’s ID)

4 Detailed Parameters Description

When setting the card’s ID the Byte 1 is the most significant byte, this means, when the card’s ID is

read, and output like (in hexadecimal, for case of single size ID):

 70 BD BF 9F Card’s ID in hexadecimal

112 189 191 159 Card’s ID in decimal

B1 B2 B3 B4 Byte’s correspondence

is expected; so the bytes would be filled like (converting the hexadecimal value to decimal, for

example with windows calculator):

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte 9 Byte 10

112 189 191 159 0 0 0 0 0 0

User’s Manual Page 29

Figure 8: Configuration of one authenticated ID (Local Authentication & Card’s ID)

4 Detailed Parameters Description

4.2 Authentication Actions

For each authentication Level it is possible to setup different actions upon presentation of an

authenticated card. This means that, when a card is on the reading field, the device will check weather

the card is authenticated, and if yes to which authentication Level it belongs; depending on the

authentication Level of the card it will react according to the settings made for that Level “Auth.

Actions” page.

An example of an authentication actions’ page for a Level (Level 1, in this case, the other Levels are

identically configured) is presented in Figure 9.

Figure 9: Default configuration page for Authentication Actions

User’s Manual Page 30

4 Detailed Parameters Description

Table 7: Description of parameters from Authentication Actions.
Parameter Description Values

Use DPT1.xxx? Selects the usage DPT1.x COs for sending
messages when card detection events occur for the
Level #

- *No
- Yes

Send at valid card detection? When a Level # valid card is presented will make the
CO to send a message if this is set to “Yes”

- *No
- Yes

Value to send Which value shall it send when an authenticated
Level # card is detected

- *OFF
- ON

Send at valid card
undetection?

When a Level # valid card is removed from the
reading field, the CO to send a message if this is set
to “Yes”

- *No
- Yes

Value to send Which value shall it send when an authenticated
Level # card is undetected

- *OFF
- ON

Use DPT2.xxx? Selects the usage DPT2.x COs for sending
messages when card detection events occur for the
Level #

- *No
- Yes

Send at valid card detection? When a Level # valid card is presented will make the
CO to send a message if this is set to “Yes”

- *No
- Yes

Value to send Which value shall it send when an authenticated
Level # card is detected

- *No Control, 0
- No Control, 1
- Control, 0
- Control, 1

Send at valid card
undetection?

When a Level # valid card is removed from the
reading field, the CO to send a message if this is set
to “Yes”

- *No
- Yes

Value to send Which value shall it send when an authenticated
Level # card is undetected

- *No Control, 0
- No Control, 1
- Control, 0
- Control, 1

Use DPT3.xxx? Selects the usage DPT2.x COs for sending
messages when card detection events occur for the
Level #

- *No
- Yes

Send at valid card detection? When a Level # valid card is presented will make the
CO to send a message if this is set to “Yes”

- *No
- Yes

Direction Together with “Amount” parameter defines the value
shall be sent when an authenticated Level # card is
detected

- *Up | Decrease
- Down | Increase

Amount Together with “Direction” parameter defines the
value shall be sent when an authenticated Level #
card is detected

- *Break
- 1.5%; 3%; 6.25%; 12.5%; 25%; 50%;
100%

Send at valid card
undetection?

When a Level # valid card is removed from the
reading field, the CO to send a message if this is set
to “Yes”

- *No
- Yes

Direction Together with “Amount” parameter defines the value
shall be sent when an authenticated Level # card is
undetected

- *Up | Decrease
- Down | Increase

Amount Together with “Direction” parameter defines the
value shall be sent when an authenticated Level #
card is undetected

- *Break
- 1.5%; 3%; 6.25%; 12.5%; 25%; 50%;
100%

User’s Manual Page 31

4 Detailed Parameters Description

Use 1 byte DPTs? Selects the usage of 1 byte length COs for sending
messages when card detection events occur for the
Level #

- *No
- Yes

Select type Defines the DPT of the 1 byte CO to be used - *DPT4 (char)
- DPT5 (1byte unsigned)
- DPT6 (1byte signed)

Send at valid card detection? When a Level # valid card is presented will make the
CO to send a message if this is set to “Yes”

- *No
- Yes

Value to send Which value shall it send when an authenticated
Level # card is detected

[depends on “Select type”]

Send at valid card
undetection?

When a Level # valid card is removed from the
reading field, the CO to send a message if this is set
to “Yes”

- *No
- Yes

Value to send Which value shall it send when an authenticated
Level # card is undetected

[depends on “Select type”]

Use scene (DPT18.001)? Selects the usage of DPT18.001 for sending
messages when card detection events occur for the
Level #

- *No
- Yes

Send at valid card detection? When a Level # valid card is presented will make the
CO to send a message if this is set to “Yes”

- *No
- Yes

Value to send Which value shall it send when an authenticated
Level # card is detected

Min: 0
Max: 63

Send at valid card
undetection?

When a Level # valid card is removed from the
reading field, the CO to send a message if this is set
to “Yes”

- *No
- Yes

Value to send Which value shall it send when an authenticated
Level # card is undetected

Min: 0
Max: 63

Use 2 byte DPTs? Selects the usage of 1 byte length COs for sending
messages when card detection events occur for the
Level #

- *No
- Yes

Select type Defines the DPT of the 1 byte CO to be used - DPT7 (2byte unsigned)
- DPT8 (2byte signed)
- *DPT9 (KNX Float)

Send at valid card detection? When a Level # valid card is presented will make the
CO to send a message if this is set to “Yes”

- *No
- Yes

Value to send Which value shall it send when an authenticated
Level # card is detected

[depends on “Select type”]

Send at valid card
undetection?

When a Level # valid card is removed from the
reading field, the CO to send a message if this is set
to “Yes”

- *No
- Yes

Value to send Which value shall it send when an authenticated
Level # card is undetected

[depends on “Select type”]

At valid detection delay send
COs

Sets the delay between Level # authenticated card’s
detection and COs’ emission to the bus

Min: 0 seconds
Max: 255 seconds

At undetection delay send COs Sets the delay between Level # authenticated card’s
undetection and COs’ emission to the bus

Min: 0 seconds
Max: 255 seconds

Select relay action at valid card
detection

Sets the relay usage when a Level # authenticated
card is detected

- *Not used
- On
- Off
- Pulse On
- Pulse Off

User’s Manual Page 32

4 Detailed Parameters Description

Select relay action at valid card
undetection

Sets the relay usage when a Level # authenticated
card is undetected

- *Not used
- On
- Off
- Pulse On
- Pulse Off

It is possible to activate more than one of the COs to send when a valid card is presented and/or

removed. Also, each of the three available levels owns its own set of COs and parameters, meaning

this that for each authorization level a different set of actions can be configured.

Imagine a situation in which it is wanted to trigger Scene 1 (costumer entrance scenario) when the

costumer’s card (level 1) is presented and to trigger Scene 2 (exit scenario) when card is removed;

additionally it is wanted to send ON message to some indication LED when costumer’s card is

presented and OFF when removed. It’s also a requirement to send the undetection messages (Scene 2

and OFF) D_und=5 seconds after the card being removed. This can be achieved with settings as:

User’s Manual Page 33

4 Detailed Parameters Description

The same device, when Master card is presented, it is desired to trigger Scene 3 (master entrance

scenario) and when it’s removed to send immediately Scene 2 (exit scenario). For this make settings

like this:

 In Figure 10 one can see the representation of a possible scenario of two different cards being

presented and removed for the previously described settings.

User’s Manual Page 34

Figure 10: Example of Auth. Actions

4 Detailed Parameters Description

4.3 Logic Channels

This function block may operate independently from the previously described function block; as a

matter of fact, the logic channels is a composition of four independent function blocks. They are

intended to solve common installation challenges involving task automation and logic.

Each of the four available logic channels can be configured in one of the following operating modes:

• Copy and forward

• Logic operation(binary)

• Comparison

• Mathematical operation

4.3.1 Copy and Forward

This mode is intended to proportionate you, in certain way, to have one CO sending for more than one

Group Address. As defined in KNX standard, one CO can send only to one Group Address. In this

way, to allow you to have one CO sending to more than one Group Address it was implemented the

“Copy and Forward” function in the Logic Channels.

When assigning the COs to their Group Addresses you should place the input CO in the Group

Address from where you want to copy, and place the output in the Group Address to which you want

the value to be copied to.

In Figure 11 is presented the configuration page for this function. In Table 8 all the parameters are

described in detail.

IMPORTANT: if “Emission Delay (s)” is set to a value different than 0s, and more than one “DPT#

Copy” is in use (in the same logic channel), than you must be aware that, the emission delay will

count from the last received input, and once expired send all waiting “DPT# Copy”. If “DPT[X]

Copy” and “DTP[Y] Copy” are in use in the same Logic Channel (say Channel A): “Input

DPT[X]” receives a message, starting the timer for emission delay (T_D); meanwhile, before T_D,

“Input DPT[Y]” takes a message, what will make the timer to reset, starting a new count to T_D;

when the timer expires both “Output DPT[X]” and “Output DPT[Y]” are sent. In case you

want different timers for different COs you should set one Logic Channel per “DPT# Copy”.

User’s Manual Page 35

4 Detailed Parameters Description

Figure 11: Default configuration page for Logic Channels – Copy and Forward

Table 8: Parameters in Logic Channel's configuration page for "Copy and Forward".
Parameter Description Values

At power up make read request
of COs?

Affects the input COs, and defines if, at power up,
the inputs should send a read request

- *No
- Yes

DPT# Copy10 Affects both, input and output COs and defines if it's
activated or not.

- *Not used
- Use

Emission Delay (s)11 Affects the value to be sent and defines the amount
of time, in seconds, that the CO will wait until
sending the value.

Min: 0 s
Max: 65535 s (~18,2 h)

Disable copy Affects the values to be sent and defines if the copy
and forward must occur or not.

- *Not used
- If '1'
- If '0’

12 When Copy Re-enabled Affects the output CO and defines its behaviour
when the “copy” is re-enabled.

Possible values:
Do nothing,
Send if new
Default: Do nothing

From Table 8 must be noticed the effect of “When Copy Re-enabled”. By setting this to “Send if

new”, it means that, if while the “DPT# Copy” is disabled via “Copy Disable” the input value

10 All of the DPT# Copy parameters have the same configuration options.
11 The emission delay applies to all of the DPT CO and counts from the last received.
12 Just present if “Disable copy” is different than “Not used”.

User’s Manual Page 36

4 Detailed Parameters Description

changes, when the copy is re-enabled (via “Copy Disable” CO) the output CO will send the last

value received; otherwise, if “When Copy Re-enabled” is set to “Do nothing”, after copy being re-

enabled the output will not send the last received value.

When more than one “DTP# Copy” CO is activated and emission delay is set to a value different

than 0 seconds, all the COs are affected by the same value, and counts from the moment that the last

input received a message.

As an example, lets imagine that's intended to control two lights via dimmer actuator. The lights can

be switched “On” and “Off” independently, but the dimming is wanted to be controlled at the same

time to all the lights, but just if the light is “On”. Normally this can't be achieved because both lights'

dimming COs would be in the same Group Address and by controlling the dimming value both lights

would be affected and would turn “On” a light that had been previously turned “Off” via its “ON /

OFF” CO. Thanks to this function, it's made possible to achieve such a lightning control. For that one

“DTP3 Copy” should be activated per light (you should notice that Control Dimming Data Point Type

is 3.007, a 4 bit value). Also the “Copy Disable” should be set to “If '0'” and “When Copy Re-

enabled” must be set to “Do nothing”. Consider the CO associations presented in Table 9.

Table 9: Possible communication object association for the example.
GA_1 GA_2 GA_3

Light1 – ON/OFF: input

Button1 – ON/OFF: output

Light2 – ON/OFF: input

Button2 – ON/OFF: output

ChannelA – Input DPT3:

input
ChannelB – Input DPT3:

input
Button3 – Dimming: output

GA_4 GA_5 GA_6

Light1 – Dimming: input

LogicA – Dimming: output

Light2 – Dimming: input

LogicB – Dimming: output

Light1 – Status: output

LogicA – Copy Disable:

input

GA_7

Ligth2 – Status: output

LogicB – Copy Disable: input

In Table 9 the GA_3 is the “source” from where we want to copy (the dimming value coming from the

user interface), so we place both inputs. The GA_4 is the Group Address of the dimming of one of the

lights, where we should place on of the logic channel's output; GA_5 controls the other light, so we

place the other logic channel's output.

User’s Manual Page 37

4 Detailed Parameters Description

In Figure 12 it's suggested a possible operation of the previously described installation having “When

Copy Re-enable” set to “Send if new”. Just the COs from the Logic Channels are evidenced.

Figure 12: Copy and Forward example.

User’s Manual Page 38

4 Detailed Parameters Description

4.3.2 Logic Operation

This mode is intended to proportionate you the possibility of create actions when a group of COs

verify a set of conditions that you predefined. The value to be sent can be selected via “Function”

parameter and the sending condition is defined by defining the “Send Condition” and “Logic

Operation”. In addition you need to select the inputs you want to used (also defining if its value

should be negated or not).

With this mode you can define one action to happen always that a logical operation is verified,

allowing you to introduce some automation to your KNX installation.

In Figure 13 is shown the default configuration page for the Logic Channels. In Table 10 the

parameters are explained in detail.

Figure 13: Logic Channel's "Logic Operation" configuration page.

Shall it be noticed that the parameter “Emission Delay (s)” applies just to the last event, this means,

if one emission delay is in progress but a new value to the output CO comes, the ongoing emission

delay is cancelled and a new one is set for the new value (resembling the buttons operability, but

User’s Manual Page 39

4 Detailed Parameters Description

without the emission cancellable by second press (see Figure 3 in 4.1.3 to understand the effect of

having new output value for emission delay before the previous being sent)). In case “Jamming” is

applied to “Output”, in case output has a value to be sent after jamming, the value is sent after

emission delay after jamming end.

Also important to notice the difference in the “Jamming” operation. In this function, when the

jamming is used, you can choose if just the output is prevented to send while the jamming is set

(meaning that when the jamming is cleared the output, if the value changed, will update its value on

the bus) or if also the inputs are prevented from receiving its values while jamming is set (meaning

that when jamming is cleared the logical channel is in the same condition that it was before the

jamming).

The parameter “Initial Result Status” is used just for the power-up situation when the “Send

condition” is “When result changes”, this because, at power up the “Result” is not yet defined what

would create and ambiguous situation. If you set “Initial Result Status” to NONE, whatever the result

of first operation, it considers that the result changed and the value is sent to the bus.

Table 10: Parameters in Logic Channel's configuration page for "Logic Operation".
Parameter Description Values

At power up make read request
of COs?

Affects the input COs, and defines if, at power up,
the inputs should send a read request

- *No
-Yes

Wait all inputs to be received (at
power up)

If enabled the logic channel won’t issue any result
until all the input COs have received at least 1 value

- *No
-Yes

Function Affects the output CO and defines the action to be
executed.

- Send values
- *Send result

DPT # Enables/disables the usage of certain CO for a
certain DPT

- *No
-Yes

Send when Affects the output CO and defines in which condition
must the output be sent to the bus.

- *Input changes
- Result changes (initial result=NONE)
- Result changes (initial result=1)
- Result changes (initial result=0)

Logic Operation Affects the operation between the inputs, affecting
the result.

- None
- And
- *Or
- Xor

Input #13 Affects each of the input COs and defines if it's
disabled or used.

- Disabled
- Normal
- Inverted

Initial status Defines the input initial status 0/1

Emission Delay (s) Affects the value to be sent and defines the amount
of time, in seconds, that the CO will wait until
sending the value.

Min: 0 s
Max: 65535 s (~18,2 h)

Jamming Affects the values to be sent and defines if the COs - *Not used

13 The “Input 1” to “Input 4” parameters have the same options.

User’s Manual Page 40

4 Detailed Parameters Description

can be prevented from sending/receiving their
values when an event trigger occurs.

- If '1'
- If '0'

When unjammed send newest
value?

If active, when unjamming is made the most updated
values are sent

- *No
-Yes

As a title of example lets consider the following situation: in one home it's intended to turn “On” a

small lamp when the kitchen, hall and living room lights are turned off at the same time, but whenever

one is turned “On”, the small lamp must be turned “Off”. For this kind of situations you may use

Logic Channels configured in “Logic Operation” mode for achieving the solution.

For accomplish the previous described example, you could set the Logic Channel's function to

“Switch (ON/OFF)”, with “Send Condition” set to “When result changes” and “Initial Result Status”

set to “FALSE” (meaning that the first message will be sent to the bus when the lamp must be turned

“On”). You would also allocate one of the inputs per state of light actuator channel (one in Kitchen

status indication (I1), other in Hall status indication (I2) and other in Living Room status

indication(I3)). As we want “Result” to be “TRUE” when all the lights are “OFF” (“FALSE”), the

logic operation to preform must be the logical AND of the inverse of the inputs:

Result=¬ I 1∧¬ I 2∧¬I 3

where '' is the logical conjunction operator (AND), and '¬' is the logical negation (NOT) (see

Appendix A -Logic operations). Having this, we can consider the truth table of our example (see Table

11).

Table 11: Truth table for 3 inputs
I1 I2 I3 ¬I1 ¬I2 ¬I3 ¬I1¬I2¬I3

0 0 0 1 1 1 1

0 0 1 1 1 0 0

0 1 0 1 0 1 0

0 1 1 1 0 0 0

1 0 0 0 1 1 0

1 0 1 0 1 0 0

1 1 0 0 0 1 0

1 1 1 0 0 0 0

In Figure 14 is presented a possible operation case for the described situation above. The situation can

be interpreted as follows: initially the lights of Kitchen and Living Room are “On” and the lights of

the Hall are “Off”. Let's consider that the device has configured to “Read objects” at power up. When

the the bus is powered up the inputs will make read requests, and later will receive their answers, but

since the initial result status was configured to “FALSE”, and the result after taking the answers is still

User’s Manual Page 41

4 Detailed Parameters Description

“FALSE”, no message is sent to the bus. Later the Kitchen's light is turned “Off”, but since the Living

Room's light still “On”, the result is still “FALSE”. When later the Living Room's light is turned

“Off”, all the lights are “Off”, which fulfils our condition to turn “On” the small lamp. In this moment

the result becomes “TRUE” what makes “ON /OFF” CO to send “On” to the small lamp. If any

lamp is tuned “On”, say the Hall's light, the result becomes “FALSE” and “ON / OFF” CO sends

“Off” to the small lamp.

Figure 14: Operation example of "Logic Operation".

User’s Manual Page 42

4 Detailed Parameters Description

Let's suppose now that there's a control button for the small lamp, and it's wanted that when the lamp

is turned “On” manually, no matter which is the status of the rest of the lightning, the small lamp must

remain “On”. For achieving this the Logic Channel's “Jamming” CO may be used. For simplicity

let's consider only the Kitchen and Hall's lights as inputs. Is also wanted to make the small lamp to

become again controlled according to the Kitchen and Hall's lightning, taking in that moment the

value according to the current lightning status. In this way, the small lamp must be controlled via two

Group Addresses: one for the manual control (which will send only “On” commands) and other for

the logic channel control. For this, you may change “Jamming” to “If '1'” and “Apply jamming to” set

to “Jamming Output”. When the jamming is applied to the output, the result is kept updating, however

the output CO will not send any messages, but as soon as jamming is cleared, if result has changed

since it's state before being jammed, the output CO will send its new value, if the result value is still

the same the output CO will not send its value.

Please refer to Table 12 for a possible association of COs that would accomplish the solution for the

previously exposed problem.

Table 12: Possible communication object association for the example.
GA_1 GA_2 GA_3

Kitchen – ON/OFF: input

Button1 – ON/OFF: output

Hall – ON/OFF: input

Button2 – ON/OFF: output

SmallLamp – ON/OFF: input

LogicA – ON/OFF: output

GA_414 GA_514 GA_6

SmallLamp – ON/OFF: input

Button3 – ON/OFF ChA: output

LogicA – Jamming: input

Button3 – ON/OFF ChB:

output
LogicA - Jamming: input

Kitchen – Status: output

LogicA - Input1: input

GA_7

Hall – Status: output

LogicA - Input2: input

In Figure 15 is shown an operation example for the previously described case. In this Figure just the

COs related with the logic channel have been considered.

14 The Button3, if from MSW100X-PL, would, for example, be configured in “2-Channel mode” set with
“ON” to Channel A and “OFF” to Channel B.

User’s Manual Page 43

4 Detailed Parameters Description

Figure 15: Logic Operation example.

User’s Manual Page 44

4 Detailed Parameters Description

4.3.3 Comparison

Automation can be extended by preforming automatic operation when a certain variable (CO) is

within certain values. This module allows the creation of automatic rules of this sort; when a CO

value matches and/or not matches a comparison a value or the value of other CO (or group of

values) from a pre-defined DPT (or pre-defined DPTs) can be issued to the bus.

Figure 16: Logic Channel's "Comparison Operation" configuration page.

User’s Manual Page 45

4 Detailed Parameters Description

Table 13: Description of parameters from Logic Channel's "Comparison Operation"
Parameter Description Values

At power up make read request
of COs?

Affects the input COs, and defines if, at power up,
the inputs should send a read request

- *No
-Yes

Send when Comparison TRUE
DPT#

Enables/Disables the usage of the DPT for the case
that the comparison being made results TRUE

- *No
- Yes

Value Defines the value to be sent when comparison
results TRUE

Depends on the DPT

Send when Comparison FALSE
DPT#

Enables/Disables the usage of the DPT for the case
that the comparison being made results FALSE

- *No
- Yes

Value Defines the value to be sent when comparison
results FALSE

Depends on the DPT

Compare with Selects with what “Logic X (Compare) – [I] DPT#
Input” is going to be compared; if “Value” is selected
it will be compared with a constant value; otherwise
a CO number must be given

- *Value
- Communication Object

Data Point type for comparison
(A)

Selects the DPT of “Logic X (Compare) – [I] DPT#
Input”

- *DPT1.x
…
- DPT9.x

Value to compare with (B) When “Compare with” is “Value” defines the value
for comparison

Depends on Data Point type for
comparison (A)

ComObj number to compare
with (B)

When “Compare with” is “Communication Object”
defines the CO to use for comparsion

Must be the CO number from this device

ComObj type (B) Specifies the DPT of the CO selected in ComObj
number to compare with (B)

- *DPT1.x
…
- DPT9.x

Comparison operation (A [op]
B)

Defines the comparison operator between A and B - *Equal (==)
- Different (!=)
- Greater (>)
- Less (<)

Emission Delay (s) Affects the value to be sent and defines the amount
of time, in seconds, that the CO will wait until
sending the value.

Min: 0 s
Max: 65535 s (~18,2 h)

Jamming Affects the values to be sent and defines if the COs
can be prevented from sending/receiving their
values when an event trigger occurs.

- *Not used
- If '1'
- If '0'

When unjammed send newest
value?

If active, when unjamming is made the most updated
values are sent

- *No
-Yes

As title of example let’s imagine that one intends to implement a rudimentary heating thermostat

function block; in the installation there’s:

• a simple temperature sensor that solely sends the room temperature (via DPT9.xxx CO);

• one MPR110x-y with at least a Logic Channel unused;

• On/Off heating actuator (radiator with KNX valve).

User’s Manual Page 46

4 Detailed Parameters Description

In this setup, one could enable a Logic channel in Comparison mode, enabling DPT1 for “Send

when Comparison TRUE” and “Send when Comparison FALSE” setting the first to “ON”

and the second to “OFF”; set “Data Point type for comparison (A)” to “DPT9.x” and the “Value

to compare with (B)” to the desired setpoint, for instance 24ºC and setting “Comparison

operation (A [op] B)” to “Less (<)”. In this case, when the temperature sensor issues values lower

than 24ºC the DPT1 output “[O]DPT1.x” will send ON message, opening the heater valve, and

when it’s higher it will send OFF closing the heater valve. Please follow with Figure 17.

One interesting addition to this system would be to allow changing the setpoint. One way of achieving

such would be by changing “Compare with” to “Communication Object”; and enabling another

dummy Logic channel in “Copy and Forward” mode (for example) and enabling DPT9 CO using it as

the input for the setpoint; setting “ComObj number to compare with (B)” to the number of the

CO enabled and associated with the input of the setpoint15; setting “ComObj type (B)” to “DPT9.x”

(or whatever type is intended to be used as the setpoint input16). To note that the comparison is only be

triggered when new values are received via input of the Logic Channel. This means that changing the

setpoint won’t trigger a comparison; it is required the temperature sensor to send a new value.

15 For example, if Logic Channel A was used for this purpose “Logic A – [I] DPT7/8/9.x Input (2 byte)” would
be used as the input of the setpoint: Communication Object number 121.

16 Internally the comparison function block will preform type conversion in order to apply the correct
comparison, even between different DPTs; for instance DPT8.x can be compared with DPT9.x

User’s Manual Page 47

Figure 17: Example of rudimentary thermostat using Comparison (compare with value)

4 Detailed Parameters Description

User’s Manual Page 48

Figure 18: Example of rudimentary thermostat using Comparison (compare with Comm
Object)

4 Detailed Parameters Description

4.3.4 Mathematical operation

Often happens to be needed to apply offsets to available COs’ values in order to perform certain

action; often happens to be needed to scale values. This functional block is intended exactly to

perform this kind of adjustments on-the-fly without using extra, expensive, computing solutions.

Calculations between different DPTs is possible, sending result via different DPTs as well17. This can

even be used as a way of converting between DPTs (by applying a not changing operation, for

example “adding 0”, and selecting a different output DTP).

Figure 19: Logic Channel's "Mathematical Operation" configuration page.

17 Depending on the DPTs truncation may apply.

User’s Manual Page 49

4 Detailed Parameters Description

Table 14: Description of parameters from Logic Channel's "Mathematical Operation"
Parameter Description Values

At power up make read request
of COs?

Affects the input COs, and defines if, at power up,
the inputs should send a read request

- *No
-Yes

Enable output for result: DPT# Enables/Disables the usage of the DPT for sending
the result of the operation; NOTE: depending on the
DPT result truncation may apply

- *No
- Yes

Make operation with Selects with what “Logic X (Math) – [I] DPT# Input”
is going to make operation with; if “Value” is selected
it will make operation with a constant value;
otherwise a CO number must be given

- *Value
- Communication Object

Select input CO type (A) Selects the DPT of “Logic X (Math) – [I] DPT# Input” - *DPT1.x
…
- DPT9.x

Value for operation (B) When “Make operation with” is “Value” defines the
value for operation

Depends on Select input CO type (A)

ComObj number to make with
(B)

When “Make operation with” is “Communication
Object” defines the CO to use for operation

Must be the CO number from this device

ComObj type (B) Specifies the DPT of the CO selected in ComObj
number to make with (B)

- *DPT1.x
…
- DPT9.x

Operation (A [op] B) Defines the mathematical operation to be made
between A and B

- + (addition)
- - (subtraction)
- / (division)
- x (multiplication)

Emission Delay (s) Affects the value to be sent and defines the amount
of time, in seconds, that the CO will wait until
sending the value.

Min: 0 s
Max: 65535 s (~18,2 h)

Jamming Affects the values to be sent and defines if the COs
can be prevented from sending/receiving their
values when an event trigger occurs.

- *Not used
- If '1'
- If '0'

When unjammed send newest
value?

If active, when unjamming is made the most updated
values are sent

- *No
-Yes

Lets suppose a situation where it is desired to get a voltage level, which is provided by a multimeter in

DPT9.020 (DPT_Value_VoltH), provided as an integer (1 byte, unsigned) in Volts; for example,

230000mV(DPT9.020) to be given as 230V(DPT5.x); this value would afterwards be used to show on

a display that can only show integer values. For this one could setup the device enabling “Enable

output for result: 1 Byte usage” and selecting “DPT5.x”; setting “Make operation with” to

“Value”; setting “Select input CO type (A)” to “DPT9.x”; “Value for operation (B)” to 1000;

“Operation (A [op] B)” to “/ (division)”.

In this configuration every time a voltage value is received via “DPT9.x input (2 byte)” the

channel will divide it per 1000 (rounding to closest), resulting the value in volts, will then convert it

from DPT9.x to DPT5.x (casting it by truncating) and sending it to the bus via “DPT5 Math op.

Result” (consider the possible sequence in Table 15).

User’s Manual Page 50

4 Detailed Parameters Description

Table 15: Example of sequence of DPT9.020 to DPT5.x using Mathematical operation

Source Name
Destination
Address

Destination Name DPT Info

1
Multimeter

0/0/1 [I]DPT9.020 Voltage(mV) 9.020 voltage (mV) $75 7B | 229867.52 mV

2
Presence detector with light
Regulation

0/0/2
[O]DPT5.x (1byte unsigned
value)

 5.010 counter pulses (0..255) $E6 | 230

3
Multimeter

0/0/1 [I]DPT9.020 Voltage(mV) 9.020 voltage (mV) $75 6F | 227901.44 mV

4
Presence detector with light
Regulation

0/0/2
[O]DPT5.x (1byte unsigned
value)

 5.010 counter pulses (0..255) $E4 | 228

5
Multimeter

0/0/1 [I]DPT9.020 Voltage(mV) 9.020 voltage (mV) $75 81 | 230850.56 mV

6
Presence detector with light
Regulation

0/0/2
[O]DPT5.x (1byte unsigned
value)

 5.010 counter pulses (0..255) $E7 | 231

Suppose other situation, in which it is desired to get the ration between the “Lights - [O]

Presence Lux Setpoint ind.” and “General – [O] Luminosity” in order to show

in some sort of display; in this case it is wanted the output value to be DPT9.004 (DPT_Value_Lux).

In this case “Enable output for result: 2 Byte usage” and selecting “DPT9.x”; setting “Make

operation with” to “Communication Object”; setting “Select input CO type (A)” to “DPT9.x”;

“ComObj number to make with (B)” set to the CO number of “Lights - [O] Presence

Lux Setpoint ind.” (35 in this case) and associate “General – [O] Luminosity” and

“Logic X – [I] DPT9.x Input (2 byte)” in the same GA of “General – [O]

Luminosity” and setting the “ComObj type (B)” also to “DPT9.x”. The “Operation (A [op] B)”

to “/ (division)”.

With this setup for every time “General – [O] Luminosity” issues a value, “DPT9.x

input (2 byte)” will receive its value, proceed to the calculation and sending it via “DPT9

Math op. Result”

User’s Manual Page 51

5 OPERATION DESCRIPTION

User’s Manual Page 52

5 Operation Description

5 OPERATION DESCRIPTION

The MDU000x-M and MES000x-M are able to operate in various configurations, each of them

implying different authentication topologies. As explained in 4.1.3 the authentication may be

configured to be preformed locally or remotely.

5.1 Local vs. Remote authentication

When the authentication is said to be Local it means that the rooms’ devices are responsible to alone

perform a card authentication; the devices will have enough information to upon card presentation

proceed to it’s validation. Normally, in such topology, the credentials for a certain room would be

static; this would be a great drawback, because the cloning of a card would directly result in the

unconditional access to that room. In order to surpass this drawback the information (valid cards’

credentials) stored in the rooms’ devices can be changed on the fly over KNX bus via COs, as well as

the memory access details (memory address/block and memory access key):

[I] Level 1 expected Auth. Data
[I] Level 1 Auth. Data Address
[I] Auth. Access key (level 1)

When the authentication is said to be Remote it means that the rooms’ devices aren’t responsible per

se of performing the authentication; they will instead transfer to the bus the relevant data (presented

card’s credentials) and some other element (normally an authentication server) will evaluate it; upon

credentials validation it must inform the rooms’ device via CO:

[I] Validate authentication

Similar with the local authentication, for the remote authentication it is also possible to change the

memory access details via COs:

[I] Level 1 Auth. Data Address
[I] Auth. Access key (level 1)

User’s Manual Page 53

5 Operation Description

User’s Manual Page 54

Figure 20: Local authentication

Figure 21: Remote authentication

5 Operation Description

5.1.1 Local authentication typical usage

In the Figure 22 it is presented in an UML activity diagram a typical full operation of the system when

the system is configured to make local authentication by using the card’s memory data; the card’s data

must be set to a value that so the rooms’ devices will recognize it as authenticated; for this purpose the

place in which the data is written must match the place the rooms’ devices are going to read, as well

as the key used to access the memory for creating the card must be the same used for reading it.

In the diagram not all of the steps are mandatory; for instance, if it is desired to keep the card’s sector

memory key static ans well as the card’s memory block number, just changing the expected data

between costumers, in the diagram, in the section “set new credentials” the messages of the COs

“[I] Level 1 Auth. Data Address” and “[I] Auth. Access key (level 1)”

can be suppress.

From the diagram one may see that for the “authentication” section no communication with server is

required for declare the card as valid/invalid.

User’s Manual Page 55

Figure 22: Diagram of a complete usage of Local authentication, using card's memory as
authentication data.

5 Operation Description

5.1.2 Remote authentication typical usage

In the Figure 23 it is presented in an UML activity diagram a typical full operation of the system when

the system is configured to make remote authentication by using the card’s memory data; the card’s

data must be set to a value that so the authentication server18 will recognize it as authenticated and

inform the rooms’ devices about it; for this purpose the place in which the data is written must match

the place the rooms’ devices are going to read, as well as the key used to access the memory for

creating the card must be the same used for reading it.

In the diagram not all of the steps are mandatory; for instance, if it is desired to keep the card’s sector

memory key static ans well as the card’s memory block number, just changing the expected data

between costumers, in the diagram, the section “set new credentials” may be skipped.

18 The authentication server must have means of reaching the KNX bus and interpret the messages; it must be
developed to match the KNX project and must know about the rooms, GAs, and authentication credentials
relation.

User’s Manual Page 56

Figure 23 Diagram of a complete usage of Remote authentication, using card's memory as
authentication data.

5 Operation Description

5.2 Using device for creating cards

MDU000x-M and MES000x-M devices are both capable of, via KNX Communication Objects,

accessing Mifare Classic cards for write operations. With this, it is possible to use them as a card

writer for the project; for example having a device in the lobby/reception intended to create costumer

cards for a specific room. The configuration possibilities are vast, therefore here a typical situation is

covered.

In order to enable the writing capabilities of the device the parameter “Enable request card operations

(read/write) via COs?” from the “DND General” tab, must be set to “Yes”.

As title of example, and for simplifying the explanations let’s here associate the COs to some GAs;

only the relevant COs are listed (see Table 16). Notice that the Group Addresses are only for

explanation purpose, and in real application they may be what ever the installer wants.

Table 16: Possible GAs for the card writer device
CO # CO Name Group Address Description

87 [I] Operation Req. Address 0/0/1 Setting the card’s memory block to read/write

88 [I] Operation Req. Access Key 0/0/2 Setting the card’s sector key to use in read/write

89 [I/O] Data to write 0/0/3 Data to be written in card’s memory block

90 [I] Memory Sector New Key 0/0/4 Setting new card’s sector key

As title of example, lets also imagine that the Door Unit is configured for local authentication, and

that the Memory Access Configurations are as seen in Figure 24. From here it is important to notice

that, for the Level 1 authentication (the costumer’s Level), the device is going to look the card’s block

number 4, and when attempting to read the memory block it will use the key “HINOX!”.

The parameter “Data expected for Level 1” can be changed via KNX CO, as we will see in 5.3. For

now let’s consider that for the expected data for Level 1, the Door Unit is expecting to read “name”

from the block 4.

Having in consideration this setup, two possible sequences of KNX GAs communication are going to

be presented as a way of creating a card with valid credentials for the Door Unit with configurations

as in Figure 24. One of the sequence to execute when creating a card from an unused, brand new card;

other sequence for the case that an already existing card (with correct key already set) is to be

changed (for example, a card previously used by other costumer).

User’s Manual Page 57

5 Operation Description

5.2.1 The sequence for creating the card from brand new card

The card must be placed in the reading field of the writer device.

Message Explanation

1 Send to 0/0/1 message DPT 5.010 with the value 4 Set the memory block to be
written

2 Send to 0/0/2 message DPT 16.* with the value $FF $FF $FF $FF $FF $FF $00 $00 $00 $00 $00

$00 $00 $00

Set the password to be used in
the write operations; this is the
default password when cards
come from factory

3 Send to 0/0/3 message DPT 16.000 with value “name” Write “name” in block 4

4 Send to 0/0/4 message DPT16.000 with value “HINOX!” Change the card’s sector key of
the memory block to the one
the room’s devices are going to
use

User’s Manual Page 58

Figure 24: Possible room devices' Memory Access
Configurations.

5 Operation Description

5.2.2 The sequence for creating the card from already used card

The card must be placed in the reading field of the writer device.

Message Explanation

1 Send to 0/0/1 message DPT 5.010 with the value 4 Set the memory block to be
written

2 Send to 0/0/2 message DPT16.000 with value “HINOX!” Set the password to be used in
the write operations; assuming
the card’s sector key was
previously set

3 Send to 0/0/3 message DPT 16.000 with value “name” Send the Level 1 expected data

5.3 Example: changing authentication credentials for Local

Authentication

In the following of the example in 5.2 it may be desired to eventually change the valid credentials in

the Door Unit; for example, after a costumer checkout it may be desirable to disable the costumer’s

card to authenticate in the room. It would be a good principle to change the “Expected data for Level

1” for every new costumer; this would avoid the risk of an unwanted card duplication resulting in

succeeding opening the door.

For this, the devices installed in the rooms can make use of the CO “80 - [I] Level 1 expected Auth.

Data”.

Table 17: Possible GAs for the room devices (ESaver and Door Unit)
CO # CO Name Group Address Description

80 [I] Level 1 expected Auth. data 1/2/3 Changes the device’s expected data in the
memory block for an authentic card

5.3.1 Making card to not authenticate

In this way in order to, for example disabling the card’s authentication after checkout, one can send

some data different from the one of the costumer’s card (in the previous example “name”):

• send to 1/2/3 message DPT16.000 with value “free”19

19 “free” is only an example, in fact anything different from “name” will result in the costumer’s card to be
unable to authenticate in the room’s devices.

User’s Manual Page 59

5 Operation Description

5.3.2 Setting the room’s devices authentication to the created card’s

credentials

Still having in mind the previous examples, imagining the room’s devices “Expected data for Level 1”

is something unknown; we are also changing an already used card (with Level 1 key set to

“HINOX!”); also considering that a card for a costumer is to be created for authenticate in the room;

let’s also assume that the expected data for Level 1 is to be “John”. With the card on the card’s writer

detection field, a possible messages sequence is:

Message Explanation

1 Send to 0/0/1 message DPT 5.010 with the value 4 Set the memory block to be written

2 Send to 0/0/2 message DPT16.000 with value “HINOX!” Set the password to be used in the write operations;

3 Send to 0/0/3 message DPT 16.000 with value “John” Write “John” in block 4

4 Send to 1/2/3 message DPT 16.000 with value “John” Change the room’s devices Expected data for Level 1

User’s Manual Page 60

5 Operation Description

5.4 Encryption

Under some circumstances it may be desirable to prevent foreign partners (let’s say spies) from

having access to some of the more critical information being exchanged on the bus. While KNX

secure isn’t yet massively available, a security layer can be added on top of the application layer; this

is achieved by encrypting the payload of the sent messages.

In the MDU/MES just some of the COs have this option (see Appendix F -I for information of which

COs can be encrypted).

In case the spy get the chance to intercept the messages, by access the communication bus, in this

application there are different aspects to be considered about security:

1. The spy shall not be able to read the messages’ contents;

2. The spy shall not be able to send manipulated messages that the system will potentially

render as valid;

3. The spy shall not be able to preform the replay of a previously intercepted message

rendering him unwanted access.

In order to address the previously mentioned aspects the following techniques may be applied:

1. Encryption of the transmitted messages: the spy won’t be able to decipher the messages

unless possessing a valid key;

2. Cyclic Redundancy Check of the sent messages (also encrypted): if the spy attempts to send

a “random” message it will be discarded for it won’t contain its CRC together;

3. Usage of sequence numbers on the messages: in this way the same message won’t be the

same twice;

As the implementation of 1. and 2. are more or less straightforward, the implementation of 3. becomes

more complex as it requires the communication partners to keep track of each others’ communication

sequence numbers. For this reason the point 3. was just partially implemented for the most critical CO

(see 4.1.4 related with “require increment sequence”).

For the encrypting algorithm RC4 is used due to it’s simplicity, execution speed while providing a

reasonable security level for the kind of application in hands. Many open implementation algorithms

can be found on the web.

For the CRC, CRC16 was used.

User’s Manual Page 61

5 Operation Description

On sender:

PL1 PL2 PL3 PL4 PL5 PL6 PL7 PL8 PL9 PL10 PL11 PL12 CRC16_H CRC16_L

On bus:

On receiver:

PL1 PL2 PL3 PL4 PL5 PL6 PL7 PL8 PL9 PL10 PL11 PL12 CRC16_H CRC16_L

User’s Manual Page 62

RC4
enc

RC4
dec

Figure 26: Flow chart
of encryption process

Figure 25: Flow chart of decryption

5 Operation Description

User’s Manual Page 63

APPENDIXES

User’s Manual Page 64

Appendixes

APPENDIX A - LOGIC OPERATIONS

Three logic operations are available to be used with up to four binary inputs (see Error: Reference

source not found), plus one more (logic NOT) that can be applied to each input independently. In

here, useful theoretical information about the four logic operations will be presented.

These functions belongs to the algebra's subarea Boolean algebra, in which the values of the variables

are the truth values TRUE and FALSE, that commonly are denoted by '1' and '0', respectively.

I - AND (Logical Conjunction)

This operator can be represented by the symbol “”. A n-place logical operator AND results TRUE if n

of its operands are TRUE, otherwise the value is FALSE.

Main properties:

• Commutativity: A∧B⇔ B∧A ;
• Associativity: A∧(B∧C)⇔(A∧B)∧C ;
• Distributivity: A∧(B∨C)⇔(A∧B)∨(A∧C) ;

Table 18: Truth tables for Conjunction Operation
Input Output Output Input Output

A B AB A B C ABC A B C D ABCD

0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 1 0

1 0 0 0 1 0 0 0 0 1 0 0

1 1 1 0 1 1 0 0 0 1 1 0

1 0 0 0 0 1 0 0 0

1 0 1 0 0 1 0 1 0

1 1 0 0 0 1 1 0 0

1 1 1 1 0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1

User’s Manual Page 65

Appendixes

II - OR (Logical Disjunction)

This operator can be represented by the symbol “”. A n-place logical operator AND results TRUE if

at least 1 of n operands is TRUE, if n operands are FALSE, then the result is FALSE.

Main properties:

• Commutativity: A∨B⇔ B∨A ;
• Associativity: A∨(B∨C)⇔(A∨B)∨C ;
• Distributivity: A∨(B∧C)⇔(A∨B)∧(A∨C) ;

Table 19: Truth tables for Disjunction Operation
Input Output Output Input Output

A B AB A B C ABC A B C D ABCD

0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 1 1 0 0 0 1 1

1 0 1 0 1 0 1 0 0 1 0 1

1 1 1 0 1 1 1 0 0 1 1 1

1 0 0 1 0 1 0 0 1

1 0 1 1 0 1 0 1 1

1 1 0 1 0 1 1 0 1

1 1 1 1 0 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

User’s Manual Page 66

Appendixes

III - XOR (Exclusive disjunction)

This operator can be represented by the symbol “”. A n-place logical operator XOR results TRUE if a

odd number of operands is TRUE, otherwise then the result is FALSE.

Main properties:

• Commutativity: A⊕B⇔ B⊕A ;
• Associativity: A⊕(B⊕C)⇔(A⊕B)⊕C ;

Table 20: Truth tables for Exclusive Disjunction Operation
Input Output Output Input Output

A B AB A B C ABC A B C D ABCD

0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 1 1 0 0 0 1 1

1 0 1 0 1 0 1 0 0 1 0 1

1 1 0 0 1 1 0 0 0 1 1 0

1 0 0 1 0 1 0 0 1

1 0 1 0 0 1 0 1 0

1 1 0 0 0 1 1 0 0

1 1 1 1 0 1 1 1 1

1 0 0 0 1

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

User’s Manual Page 67

Appendixes

IV - NOT (Negation)

This operator can be represented by the symbol “¬”. Negation is unary (single-argument) logical

operator. Negation function takes Falsity to Truth and vice versa.

Main properties:

• Double negation: ¬¬A⇔ A and ¬¬¬A⇔¬A ;
• Distributivity (Morgan's law): ¬(A∨B)⇔(¬A∧¬B) and ¬(A∧B)⇔(¬A∨¬B) ;

Table 21: Truth table for NOT Operation
A ¬A

0 1

1 0

User’s Manual Page 68

Appendixes

APPENDIX B - KNX DATA TYPES

Table 22: Some of the KNX Data Points TypesTable
DPT_ID DPT_Name Size (bits)

1.001 DPT_Switch 1

1.002 DPT_Bool 1

1.003 DPT_Enable 1

1.004 DPT_Ramp 1

1.005 DPT_Alarm 1

1.006 DPT_BinaryValue 1

1.007 DPT_Step 1

1.008 DPT_UpDown 1

1.009 DPT_OpenClose 1

1.010 DPT_Start 1

1.011 DPT_State 1

1.012 DPT_Invert 1

1.013 DPT_DimSendStyle 1

1.014 DPT_InputSource 1

1.015 DPT_Reset 1

1.016 DPT_Ack 1

1.017 DPT_Trigger 1

1.018 DPT_Occupancy 1

1.019 DPT_Window_Door 1

1.021 DPT_LogicalFunction 1

1.022 DPT_Scene_AB 1

1.023 DPT_ShutterBlinds_Mode 1

1.100 DPT_eat/Cool 1

2.001 DPT_Switch_Control 2

2.002 DPT_Bool_Control 2

2.003 DPT_Enable_Control 2

2.004 DPT_Ramp_Control 2

2.005 DPT_Alarm_Control 2

2.006 DPT_BinaryValue_Control 2

2.007 DPT_Step_Control 2

2.008 DPT_Direction1_Control 2

2.009 DPT_Direction2_Control 2

2.010 DPT_Start_Control 2

2.011 DPT_State_Control 2

2.012 DPT_Invert_Control 2

3.007 DPT_Control_Dimming 4

3.008 DPT_Control_Blinds 4

4.001 DPT_Char_ASCII 8

4.002 DPT_Char_8859_1 8

User’s Manual Page 69

Appendixes

5.001 DPT_Scaling 8

5.003 DPT_Angle 8

5.004 DPT_Percent_U8 8

5.005 DPT_DecimalFactor 8

5.010 DPT_Value_1_Ucount 8

6.001 DPT_Percent_V8 8

6.010 DPT_Value_1_Count 8

6.020 DPT_Status_Mode3 8

7.001 DPT_Value_2_Ucount 16

7.002 DPT_TimePeriodMsec 16

7.003 DPT_TimePeriod10MSec 16

7.004 DPT_TimePeriod100MSec 16

7.005 DPT_TimePeriodSec 16

7.006 DPT_TimePeriodMin 16

7.007 DPT_TimePeriodrs 16

7.010 DPT_PropDataType 16

7.011 DPT_Length_mm 16

7.012 DPT_UElCurrentmA 16

7.013 DPT_Brightness 16

8.001 DPT_Value_2_Count 16

8.002 DPT_DeltaTimeMsec 16

8.003 DPT_DeltaTime10MSec 16

8.004 DPT_DeltaTime100MSec 16

8.005 DPT_DeltaTimeSec 16

8.006 DPT_DeltaTimeMin 16

8.007 DPT_DeltaTimers 16

8.010 DPT_Percent_V16 16

8.011 DPT_Rotation_Angle 16

9.001 DPT_Value_Temp 16

9.002 DPT_Value_Tempd 16

9.003 DPT_Value_Tempa 16

9.004 DPT_Value_Lux 16

9.005 DPT_Value_Wsp 16

9.006 DPT_Value_Pres 16

9.007 DPT_Value_umidity 16

9.008 DPT_Value_AirQuality 16

9.010 DPT_Value_Time1 16

9.011 DPT_Value_Time2 16

9.020 DPT_Value_Volt 16

9.021 DPT_Value_Curr 16

9.022 DPT_PowerDensity 16

9.023 DPT_KelvinPerPercent 16

9.024 DPT_Power 16

9.025 DPT_Value_Volume_Flow 16

User’s Manual Page 70

Appendixes

...

User’s Manual Page 71

Appendixes

APPENDIX C - CARD’S MEMORY ACCESS CONDITIONS (NXP VS

FUDAN)

Consider the two images below:

User’s Manual Page 72

Figure 27: Fudan Microelectronics FM11RF08 card KeyA and KeyB configurations. Source:
Functional Specification

Figure 28: NXP MF1S50yyx/V1 card KeyA and KeyB configurations. Source: Product
Datasheet

Appendixes

In the Figure 27 one can see that the card’s default access bits configurations allow to Read and Write

the KeyA, KeyB and Access bits by using the KeyA or KeyB; in Figure 28 one can see that Read and

Write of KeyA, KeyB and Access bits is possible just by using the KeyA, by using KeyB Read and

Write operations aren’t allowed. This means that in the Fudan’s case, if the KeyB is kept in it’s

default, one may use it for access (reading/writing) the KeyA; as consequence we may potentially get

access to the data blocks.

The MDU/MES devices keep the Access bits in it’s transport configuration, that so afterwards KeyA,

KeyB and data blocks may be altered on the card’s memory.

User’s Manual Page 73

Appendixes

APPENDIX D - MIFARE MEMORY LAYOUT

https://commons.wikimedia.org/wiki/File:MiFare_Byte_Layout.png

User’s Manual Page 74

https://commons.wikimedia.org/wiki/File:MiFare_Byte_Layout.png

Appendixes

APPENDIX E - ENCRYPTION, CRC16: ALGORITHMS & SOURCE

CODE

I - Encryption: RC4 algorithm and source code

“RC4 is an encryption algorithm that was created by Ronald Rivest of RSA Security. It is used in

WEP and WPA, which are encryption protocols commonly used on wireless routers. To begin the

process of RC4 encryption, you need a key, which is often user-defined and between 40-bits and 256-

bits. A 40-bit key represents a five character ASCII code that gets translated into its 40 character

binary equivalent (for example, the ASCII key "pwd12" is equivalent to

0111000001110111011001000011000100110010 in binary)”20.

The processes Key Scheduling Algorithm (KSA) and Pseudo-Random Generation Algorithm (PRGA)

processes’ implementation are also demonstrated in the figure bellow.

20 Reference: https://sites.math.washington.edu/~nichifor/310_2008_Spring/Pres_RC4%20Encryption.pdf

User’s Manual Page 75

Figure 29: RC4 encryption (left) and decryption (right) flowchart

https://sites.math.washington.edu/~nichifor/310_2008_Spring/Pres_RC4%20Encryption.pdf

Appendixes

User’s Manual Page 76

Figure 30: KSA and PRGA processes' flowchart. Ref:
https://www.researchgate.net/figure/261455297_fig1_Figure-1-RC4%27s-
processing-flowchart

https://www.researchgate.net/figure/261455297_fig1_Figure-1-RC4's-processing-flowchart
https://www.researchgate.net/figure/261455297_fig1_Figure-1-RC4's-processing-flowchart

Appendixes

Bellow it is found the C source code used for implementing RC4 encryption/decryption in the

MDU/MES devices:

rc4.c:

#include <stdint.h>
#incldue <stdlib.h>

/**
 * Encrypt/Decrypt message
 *
 * \param [in] key Base Key
 * \param [in/out] msg Plaintext / Cyphertext (after calling contains the output)
 * \param [in] keyLen Length of the \ref key in bytes
 * \param [in] msgLen Length of the \ref msg in bytes
 * \return 0 if failed, 1 if success
 */
uint8_t rc4_encdec(uint8_t *key, uint8_t *msg, uint8_t keyLen, uint8_t msgLen)
{

uint8_t bRet;
uint8_t *pState;

pState = malloc(256);
if(NULL == pState)
{

/* failed allocating memory for state vector */
bRet = 0;

}
else
{

rc4_ksa(pState, key, keyLen);
rc4_prga(pState, msg, msgLen);
free(pState);
bRet = 1;

}

return bRet;
}

/**
 * Key Scheduling Algorithm
 *
 * \param [in/out] state Used to generate the keystream
 * \param [in] key Key used to initialize the state
 * \param [in] len Length of the \ref key in bytes
 */
void rc4_ksa(uint8_t state[], uint8_t key[], uint8_t len)
{
 uint16_t i;
 uint16_t j=0;
 uint16_t t;

 for (i=0; i < 256; ++i)
 {
 state[i] = i;
 }
 for (i=0; i < 256; ++i)
 {
 j = (j + state[i] + key[i % len]) & 0xFF;
 t = state[i];
 state[i] = state[j];
 state[j] = t;
 }
}

/**
 * Pseudo-Random Generator Algorithm

User’s Manual Page 77

Appendixes

 *
 * \param [in] state Used to generate the keystream
 * \param [in,out] msg The message to process
 * \param [in] len Length of the \ref msg in bytes
 */
void rc4_prga(uint8_t state[], uint8_t msg[], uint8_t len)
{
 uint16_t i=0;
 uint16_t j=0;
 uint16_t x;
 uint16_t t;

 for (x=0; x < len; ++x)
 {
 i = (i + 1) & 0xFF;
 j = (j + state[i]) & 0xFF;
 t = state[i];
 state[i] = state[j];
 state[j] = t;
 msg[x] ^= state[(state[i] + state[j]) & 0xFF];
 }
}

end of rc4.c

A python implementation can be found bellow.

rc4.py:

def rc4(data, key):

 """RC4 encryption and decryption method.
 :param list data: plaintext / cyphertext to encrypt / decrypt
 :param list key: Base key to use for encyption / decryption
 :return list
 """
 # KSA:
 S, j, out = range(256), 0, []
 for i in range(256):
 j = (j + S[i] + key[i % len(key)]) % 256
 S[i], S[j] = S[j], S[i]
 # PRGA
 i = j = 0
 for ch in data:
 i = (i + 1) % 256
 j = (j + S[i]) % 256
 S[i], S[j] = S[j], S[i]
 out.append(ch ^ S[(S[i] + S[j]) % 256])
 return out

end of rc4.py.

User’s Manual Page 78

Appendixes

II -Cyclic Redundancy Check: CRC16 algorithm and source

code

Bellow find the python implementation of the CRC16 algorithm. The CRC16 seed used is 0.

crc16.py:

def crc16(data, dlen, seed=0):

 """
 :param list data:
 :param int dlen:
 :param int seed:
 :return int:
 """
 reg=seed
 for i in range(dlen):
 crc_new = ((reg>>8)&0xFF)|(reg<<8)
 crc_new = crc_new ^ (data[i])
 crc_new = crc_new ^ ((crc_new&0xFF)>>4)
 crc_new = crc_new ^ (crc_new<<12)
 crc_new = crc_new ^ ((crc_new &0xFF)<<5)
 reg = crc_new&0xFFFF
 return reg

end of crc16.py.

User’s Manual Page 79

Appendixes

APPENDIX F - DETAILED DESCRIPTION OF COMMUNICATION

OBJECTS

I - DND

CO
n

Text Function
In/O
ut

DPT Details
Encryption
available

57 Relay [O] Status Indication Out 1.001 DPT_Switch Informs about the state of the relay

58
Authenticati
on

[O] Detected card’s ID Out
16.000
DPT_String_ASCII

Sends the read UID Y

59
Authenticati
on

[O] Undetected card’s
ID

Out
16.000
DPT_String_ASCII

Sends the UID of card undetected Y

60
Authenticati
on

[O] Card’s
Authentication Data

Out
16.000
DPT_String_ASCII

Sends the read info from the desired Memory
address (just the 14 first bytes) MemCheck Y

61 DND [O] 1 bit CO (level 1) Out 1.002 DPT_Bool

COs to send at detection/undetection of Level 1
cards

62 DND [O] 2 bit CO (level 1) Out 2.x

63 DND [O] 4 bit CO (level 1) Out 3.x

64 DND [O] 1 byte CO (level 1) Out 4.x, 5.x, 6.x

65 DND [O] Scene CO (level 1) Out
18.001
DPT_SceneControl

66 DND [O] 2 byte CO (level 1) Out 7.x, 8.x, 9.x

67 DND [O] 1 bit CO (level 2) Out 1.002 DPT_Bool

COs to send at detection/undetection of Level 2
cards

68 DND [O] 2 bit CO (level 2) Out 2.x

69 DND [O] 4 bit CO (level 2) Out 3.x

70 DND [O] 1 byte CO (level 2) Out 4.x, 5.x, 6.x

71 DND [O] Scene CO (level 2) Out
18.001
DPT_SceneControl

72 DND [O] 2 byte CO (level 2) Out 7.x, 8.x, 9.x

73 DND [O] 1 bit CO (master) Out 1.002 DPT_Bool

COs to send at detection/undetection of Master
level cards

74 DND [O] 2 bit CO (master) Out 2.x

75 DND [O] 4 bit CO (master) Out 3.x

76 DND [O] 1 byte CO (master) Out 4.x, 5.x, 6.x

77 DND [O] Scene CO (master) Out
18.001
DPT_SceneControl

78 DND [O] 2 byte CO (master) Out 7.x, 8.x, 9.x

79 Op. Req.
[I/O] Data read (from
Rd. Req.)

In/O
ut

16.000
DPT_String_ASCII

Sends the Data Read via triggerRead Y

80
Authenticati
on

[I] Level 1 expected
Auth. Data

In
16.000
DPT_String_ASCII

Sets Level 1 Auth expected Data Y

81
Authenticati
on

[I] Level 2 expected
Auth. Data

In
16.000
DPT_String_ASCII

Sets Level 2 Auth expected Data Y

User’s Manual Page 80

Appendixes

82
Authenticati
on

[I] Level 1 Auth. Data
Address

In
5.010
DPT_Value_1_Ucou
nt

Level 1 Sets the Addr to be read for Expected
Data

83
Authenticati
on

[I] Level 2 Auth. Data
Address

In
5.010
DPT_Value_1_Ucou
nt

Level 2 Sets the Addr to be read for Expected
Data

84
Authenticati
on

[I] Auth. Access key
(level 1)

In
16.000
DPT_String_ASCII

Sets the KeyA to be used for memory access for
expected data Level 1 Y

85 Op. Req.
[I] Trigger Read
Request

In 1.017 DPT_Trigger Trigger a Read

86 Op. Req.
[I] Trigger Write
Request

In 1.017 DPT_Trigger Trigger a Write

87 Op. Req.
[I] Operation Req.
Address In

5.010
DPT_Value_1_Ucou
nt

Sets the Addr to be read at Read trigger

88 Op. Req.
[I] Operation Req.
Access Key

In
16.000
DPT_String_ASCII

Sets the keyA to use at Read/Write Trigger Y

89 Op. Req. [I/O] Data to write In
16.000
DPT_String_ASCII

Sets the data that is to be written (if Y

90 Op. Req.
[I] Memory Sector New
Key

In
16.000
DPT_String_ASCII

Sets a new keyA to the block pointed by
memWriteAddr Y

91 Relay [I] On/Off In 1.001 DPT_Switch Controls the relay

92 Relay [I] Prio On/Off In
2.001
DPT_Switch_Control

Overrides the state of the relay

93 DND [I] Room Number In
7.001
DPT_Value_2_Ucou
nt

Sets the room number (affects the display)

94 DND [I] Ring Bell In 1.017 DPT_Trigger Triggers the bell ring

95 DND
[I] Bell melody
(prev/next)

In 1.008 DPT_UpDown Selects previous/next melody

96 DND [I] Bell melody number In
5.010
DPT_Value_1_Ucou
nt

Selects the melody

97 DND [I] Bell mute In 1.001 DPT_Switch Mutes/Unmutes the bell

98
Authenticati
on

[I] Validate
authentication

In 1.002 DPT_Bool
Informs if the presented auth info (rs_memData
+ snd_UIDdetected) is valid (NOTE: must be
sent within timeOut)

99 DND [I] Show text on display In
16.000
DPT_String_ASCII

Text data to show on the LCD screen (if
available) Y

User’s Manual Page 81

Appendixes

II -Logic Channels

There are four logic channels, all of them with same functionality. For determining the Group Object

number apply the following offsets:

• Logic Channel A: X = 0; Y = 0

• Logic Channel B: X = 5; Y = 9

• Logic Channel C: X = 10; Y = 18

• Logic Channel D: X = 15; Y = 27

Table 23: Logic Channels function specific COs' description
Function #GO21 GO Name IN/OUT DPT

Logic
Operation

128+X [I] Jamming IN 1.002

120+X [I] DPT1.x Input 1 IN 1.x

121+X [I] DPT1.x Input 2 IN 1.x

122+X [I] DPT1.x Input 3 IN 1.x

123+X [I] DPT1.x Input 4 IN 1.x

Send Result 100+Y [O] DPT1.x OUT 1.001

Value

DPT1 100+Y [O] DPT1.x OUT 1.001

DPT2 101+Y [O] DPT2.x OUT 2.x

DPT3 102+Y [O] DPT3.x OUT 3.x

1 Byte

DPT4 103+Y [O] DPT4.x OUT 4.x

DPT5 103+Y [O] DPT5.x OUT 5.x

DPT6 103+Y [O] DPT6.x OUT 6.x

Scene 103+Y [O] Scene OUT 17.001

2 Byte

DPT7 104+Y [O] DPT7.x OUT 7.x

DPT8 104+Y [O] DPT8.x OUT 8.x

DPT9 104+Y [O] DPT9.x OUT 9.x

Copy and Forward/
Mathematical operation/
Comparison

120+X [I] DPT1.x Input IN 1.xxx

124+X [I] DPT2.x Input IN 2.xxx

125+X [I] DPT3.x Input IN 3.xxx

126+X [I] DPT4/5/6.x Input IN 4.xxx to 6.xxx

127+X [I] DPT7/8/9.x Input IN 7.xxx to 9.xxx

100+Y [O] DPT1.x OUT 1.xxx

101+Y [O] DPT2.x OUT 2.xxx

102+Y [O] DPT3.x OUT 3.xxx

103+Y [O] DPT4/5/6.x OUT 4.xxx to 6.xxx

104+Y [O] DPT7/8/9.x OUT 7.xxx to 9.xxx

128+X [I] Jamming IN 1.002

21 First CO is the number 0, according to ETS™.

User’s Manual Page 82

	1 GENERAL INFORMATION
	1.1 System Overview
	1.2 Minimum requirements
	1.3 Acronyms and Abbreviations

	2 SYSTEM SUMMARY
	2.1 Application Functions Overview
	2.2 Devices variations

	3 GETTING STARTED
	3.1 Connecting for the first time
	3.2 Downloading application with ETS™

	4 DETAILED PARAMETERS DESCRIPTION
	4.1 DND General Configuration
	4.1.1 DND General Configuration – Door Unit
	4.1.2 DND General Configuration – Energy Saver
	4.1.3 DND Confs – Authentication
	4.1.4 DND Confs – Memory Access Configurations
	4.1.5 DND Confs – Authentication Ids Configuration

	4.2 Authentication Actions
	4.3 Logic Channels
	4.3.1 Copy and Forward
	4.3.2 Logic Operation
	4.3.3 Comparison
	4.3.4 Mathematical operation

	5 OPERATION DESCRIPTION
	5.1 Local vs. Remote authentication
	5.1.1 Local authentication typical usage
	5.1.2 Remote authentication typical usage

	5.2 Using device for creating cards
	5.2.1 The sequence for creating the card from brand new card
	5.2.2 The sequence for creating the card from already used card

	5.3 Example: changing authentication credentials for Local Authentication
	5.3.1 Making card to not authenticate
	5.3.2 Setting the room’s devices authentication to the created card’s credentials

	5.4 Encryption

	Appendix A - Logic operations
	I - AND (Logical Conjunction)
	II - OR (Logical Disjunction)
	III - XOR (Exclusive disjunction)
	IV - NOT (Negation)

	Appendix B - KNX Data types
	Appendix C - Card’s memory access conditions (nxp vs fudan)
	Appendix D - Mifare Memory Layout
	Appendix E - Encryption, CRC16: Algorithms & Source code
	I - Encryption: RC4 algorithm and source code
	II - Cyclic Redundancy Check: CRC16 algorithm and source code

	Appendix F - Detailed description of Communication objects
	I - DND
	II - Logic Channels

